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A vector model of adiabatic decoupling is enunciated for an
IS-coupled system of two spin-1

2
heteronuclei in the high-power

limit of ideal adiabatic pulses. The observed S-spin magnetization
evolves according to a time-dependent coupling that scales as the
z component of an I-spin vector which evolves due to the applied
decoupling irradiation. Simple analytical expressions are derived
both on and off resonance for the reduced coupling during an ideal
sech/tanh inversion pulse and for the resulting signal when either
in-phase or antiphase magnetization is present at the start of
decoupling. The resulting model allows one to readily envision
decoupling experiments, make accurate estimates of sideband in-
tensity, and assess the relative performance of different decoupling
schemes. The utility of the model is further demonstrated by
applying it to several recently proposed methods for reducing
sidebands. In the limit of ideal adiabatic pulses, the predictions of
the vector model are almost identical to those of quantum me-
chanics. At the lower RF power levels used in practical adiabatic
decoupling applications, where the pulses are no longer perfectly
adiabatic, phase cycles are employed to achieve performance that
approximates the ideal limits derived here, so the vector model is
more generally applicable, as well. These limits establish standards
for future determination of the most efficient parameters for prac-
tical applications of broadband adiabatic decoupling in a single
transient. © 1998 Academic Press

Key Words: adiabatic decoupling; broadband decoupling; side-
bands; vector precession.

INTRODUCTION

Quantum mechanics provides an unerringly accurate de-
scription of NMR phenomena. Given sufficient computational
resources, the results of any NMR experiment can be calcu-
lated with precision. Although the theory needs no supporting
visual model for its application, such models can provide
significant insight into the evolving physical processes under-
lying the results of a rigorous calculation. Moreover, visual-
ization can allow one to intuit correct results and predictions
for new experiments “on-the-fly,” a useful capability that is
often precluded by a pure resort to the abstract machinery of
quantum mechanics. Playing a role both complementary and
supplementary to the theory, an intuitive approach may also
elicit relevant new questions that can then be solved in detail,
or impose reasonable values for parameters, approximations, or

logical boundary conditions as a starting point for a full cal-
culation.

In this article, we develop a vector model of adiabatic
decoupling. We employ the Heisenberg vector model (1),
which provides an accurate method for visualizing and quan-
tifying weakly coupled spin evolution in NMR. It is readily
applied to the majority of NMR pulse sequences in which spin
evolution during the pulse can be ignored, and is particularly
simple to apply in the case of two coupled spin-1

2
heteronuclei

I and S (2, 3). Recently, this picture was extended to include
coupling evolution during an adiabatic pulse (4). We show that
the new model provides significant insight into the functional
details of an adiabatic decoupling sequence and clearly illus-
trates some of the advantages inherent in modulating RF am-
plitude/frequency using the sech/tanh (hyperbolic secant) pulse
(5) for adiabatic decoupling (6, 7). We expect that the model
will also clarify other situations of practical importance. For
example, whereas asynchronous decoupling is useful when
employed with composite pulses, it actually degrades the per-
formance of adiabatic decoupling, as reported previously (8).
The model provides a simple but accurate means of predicting
the performance of this method and other proposed schemes
for reducing sidebands.

The model also gives a straightforward mechanism for the
production of coherence sidebands in adiabatic decoupling
(8–10). Coherence sidebands are new in the sense that longi-
tudinal and transverse coherence were generally considered to
be undetectable in 1D spectra obtained with the decoupler on
during acquisition. A quantum-mechanical derivation account-
ing for the existence of these RF-induced coherence signals is
given in Eq. [2] of Ref. (10). A detailed treatment of related
phenomena that were predicted to occur in 1D spectra only
with the decoupler switched off during acquisition can be
found in (11). The discussion therein also noted that effects
could be expected in multidimensional spectra even with the
decoupler on during acquisition. Examples can be found in
(12) and (13).

An analytical expression for the time-dependent coupling
operative during the sech/tanh pulse is derived in the limit of
ideal adiabaticity. Simple closed-form solutions—applicable
over the full decoupled bandwidth—are provided for the signal
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resulting from various initial configurations of the magnetiza-
tion at the start of decoupling. From these solutions, we cal-
culate a greatest lower bound for the maximum sideband
amplitude as a function of the relevant sech/tanh input param-
eters (which is to say, the maximum sideband cannot be less
than this bound, but will be equal to it under ideal conditions).
Since the intensity of the decoupled centerband depends sen-
sitively on sideband amplitude, the analysis also sets an upper
limit (least upper bound) on the intensity of the decoupled
peak, which is an important factor in determining the signal-
to-noise ratio of a given decoupling experiment. The vector
model shows that these bounds are applicable off resonance,
across the full effective decoupled bandwidth. These derived
bounds provide useful limits for the performance of adiabatic
decoupling in a single transient and set boundaries that help
define a potentially superior method. Ultimately, phase cycles
are implemented to approximate the performance represented
by the ideal limits, so the picture provided by the vector model
is relevant to the problems of real adiabatic decoupling as well.

THEORY

The intuitive vector model described in this section was not
derived in the usual sense of the term, but a plausibility
argument can be constructed that clarifies connections between
the model and the exact quantum-mechanical treatment of
adiabatic decoupling. First, an implementation of the sech/tanh
inversion pulse is defined. A brief outline of the steps neces-
sary to perform a complete quantum-mechanical calculation of
adiabatic decoupling for a simple IS-coupled system of two
spin-1

2
heteronuclei follows. The S spins are observed while the

decoupling irradiation is applied to the I spins. From this
overview, we identify a time-dependent coupling which can be
related to the orientation of the effective field seen by the I
spins. The necessity of accommodating different initial condi-
tions at the start of decoupling, however, requires a more
general picture of this coupling which we relate to the orien-
tation of vectors associated with the I spins. The resulting
model is summarized at the end of the section.

Adiabatic Decoupling and Quantum Mechanics

The time-dependent amplitude/frequency modulation func-
tions of the sech/tanh pulse can be parameterized in a reference
frame rotating at the instantaneous frequency of the pulse (i.e.,
the frequency-modulated (14) FM frame) as

B1 5 RFmaxsechb~1 2 2t/Tp) x̂ [1]

DH 5 bwdth/2 @tanhb~12 2t / Tp! 1 s# ẑ. [2]

RFmaxis the maximum amplitude of theB1 field, which defines
the x axis in the FM frame. The inversion pulse length isTp.
The frequency is swept in the range6bwdth/ 2, appearing as

an additional field along thez axis in this frame, ands is the
resonance offset of the pulse in units ofbwdth/ 2, wheres 5
0 denotes on-resonance decoupling. A valueb 5 5.3 is typi-
cally chosen to truncate the exponential decay of the sech
function at a value of 0.01. The total effective fieldBe, which
is the vector sum of the fields in Eqs. [1] and [2], thus begins
aligned with the1z axis to a high degree of approximation,
then sweeps through thex axis at timeTp/2 for s 5 0, and
becomes aligned (approximately) with the2z axis at the end
of the pulse.

A formal solution for the results of a decoupling experiment
applied to the I spins can be obtained by transforming to a
coordinate frame rotating withBe. In the weak-coupling limit,
the Hamiltonian* is diagonal in this frame. The propagator
between initial timet0 and final timet is simply exp[2i*(t 2
t0)], and the solution for the state of the system can be
transformed back to the laboratory frame in order to calculate
the results of a measurement on the system. An example of this
approach applied to the case of adiabatic polarization transfer
can be found in (15), based on the formalism developed in (16)
for treating coherence transfer in the rotating frame. Alterna-
tively, in the FM frame, the interval (t 2 t0) can be divided
into a sequence of subintervals which are sufficiently small that
* is approximately constant during each increment. Propagat-
ing the evolution of states in this sequence of time-independent
steps provides a solution at any timet, as in the general
treatment of decoupling given in (17).

In the high-power limit where the pulse is sufficiently adi-
abatic that the I spins are spin-locked to the effective field, the
theory admits a more visual interpretation that provides a
detailed physical picture of adiabatic decoupling. We first
recall some important differences between the present case, in
which continuous RF irradiation is applied, and previous vec-
tor models of nuclear spin evolution. In situations involving
only chemical-shift and coupling evolution, all terms in the
Hamiltonian commute, so each effect can be treated separately.
One can calculate the time evolution of either the operators
(Heisenberg picture) or states (Schro¨dinger picture) and iden-
tify a clear correspondence with a classical vector rotating in
the expected manner. When an RF field is applied orthogonal
to thez axis, the terms in* no longer all commute, and the
propagator due to coupling and the RF field must be treated as
a single entity. Effects that are uniquely quantum phenomena
can result from the noncommutation of the operators. The time
evolution of operators or states can still be calculated, but the
correspondence with a classical vector rotating in physical
space is more difficult to discern, since the states themselves
evolve in an abstract Hilbert space. The connection between
this abstract space and real, physical space is maintained
through the calculation of expectation values. Although clas-
sical reasoning can be applied to the expectation values (but
not directly to the states), the quantum-mechanical result for a
general decoupling experiment (10, 17) can be difficult to
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interpret visually, and the equations in the case of specific
experiments usually must be solved numerically.

Time-Dependent Coupling

As a first step in identifying a classical analog to decoupling
theory, we consider the Hamiltonian in the frame rotating with
Be. The required transformations implicitly rotate the quanti-
zation axis of the I spins in the FM frame to the axis defined by
the direction ofBe. In the adiabatic limit, the I spins will
remain aligned withBe as the orientation ofBe changes in the
FM frame. For S-spin heteronuclei during irradiation of the I
spins,DH @ B1, and the effective field seen by the S spins is
aligned with thez axis of the FM frame to a high degree of
accuracy. Thus, with the polar angleu giving the orientation of
Be with respect to thez axis, the coupling termJ0 I z S ' J0(Iz

cosu )Sz in this frame (neglecting off-diagonal terms involving
transverse operators in the weak coupling limit). This result is
a particular case of more general derivations provided in Eq.
[18] of Ref. (16) and Eq. [14] of Ref. (15) for RF irradiation
applied to both the I and S spins.

The energy level differences that appear as line splitting are
unaffected by the transformations between the various rotating
frames just mentioned, and we therefore identify a time-depen-
dent reduced coupling

Jr~t! 5 J0 cosu ~t! [3]

valid in both the FM frame and the laboratory frame for the
high power limit of adiabatic decoupling. This result, previ-
ously deduced and supported by intuitive arguments (but de-
fined in terms of the angle betweenBe and the transverse
plane), has been verified experimentally (4).

In the adiabatic limit, where the system is in an eigenstate of
the instantaneous Hamiltonian, we can derive the same result
by diagonalizing the FM-frame Hamiltonian to obtain, similar
to (18),

Jr 5 @~DH 1 J0/ 2!2 1 B1
2#1/ 2 2 @~DH 2 J0/ 2!2 1 B1

2#1/ 2,

[4]

which we write in the form

Jr

Be
5 F1 1

(J0/2)2 1 J0DH)

Be
2 G1/ 2

2 F1 1
(J0/2)2 2 J0DH)

Be
2 G1/ 2

. [5]

For Be 5 [B1
2 1 (DH)2]1/ 2 @ J0, which is a negligible

restriction in many applications, expanding the radicals and
keeping the first nonvanishing term gives

Jr < J0DH/Be, [6]

for the magnitude of the reduced coupling, which is the same
as Eq. [3], since cosu 5 DH/Be.

Quantization Axes

The Hamiltonian and, hence, the time-development operator
do not depend on the initial state of the system, but the
outcome of a given experiment does. So far, there is nothing in
the model that distinguishes between different initial condi-
tions, on which the subsequent state of the system depends.
The expression for the reduced coupling in* was obtained for
the I spins implicitly quantized alongBe. On physical grounds,
we expect the energy levels of an individual S spin coupled to
an I spin in a magnetic field to depend on the orientation of the
I spin in the field rather than on the orientation of the field
itself. In the standard vector model of coupling evolution in the
absence of RF irradiation, the coupling is represented by the
semiclassical vectors Ia and Ib, antiphase along thez axis
defined by the polarizing field,B0. In the present model incor-
porating the influence of the RF field, a dependence on initial
conditions arises if the coupling is related to the orientation of
similar semiclassical vectors rather than the direction ofBe.
The time evolution of the I vectors provides the necessary
dynamics in the model, as described in the next section. We
first consider how these I vectors are assigned in the model.

An NMR experiment begins with the spins in au6z& state
with respect toB0. The small excess in the number of I spins
in the ground state can be associated with a classical magne-
tization vector aligned withB0. An applied RF field induces
transitions between states to dynamically reorder the relative
populations in a way that can be viewed as a vector precessing
at the Larmor frequency about the effective field. But in a
decoupling experiment that observes the S spins, the state of an
individual I spin that is attached to an observable S-spin
constituent of the sample determines the effect of the coupling.
For in-phase S magnetization at the start of decoupling, there is
no coherence between the I and S spins, and the corresponding
state of the attached I spin might be considered to be indeter-
minate, in the sense that it has not been “measured.” There is
equal probability of the spin being in au6& state with respect
to any measurement axis. In the FM frame, this axis is estab-
lished by Be, as reflected in Eq. [3]. However, coherence
between the I and S spins reveals the state of the attached I
spin. For example, if the S spin evolves from au1x& state to a
u6y& state prior to decoupling, it was attached to au7z& I spin.
The state of the I spin has been “measured,” so, in this case,
there is a preferred direction established, prior to and indepen-
dent ofBe. The I spins have been ordered along thez axis, and
subsequent pulses, in particular the applied decoupler irradia-
tion, can convert this to order along thex or y axes.

The Vector Model

We therefore employ a modified standard coupling model
using the semiclassical vectors Ia and Ib to describe ideal
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adiabatic decoupling, in which the observed magnetization is
determined by associated vectorsSa and Sb that precess in
opposite directions in the transverse plane at a time-dependent
frequencyJr /2 instead of a constantJ0/ 2. The projection of Ia
on thez axis defines the instantaneous reduced coupling

Jr~t! 5 J0 @Ia~t!#z [7]

for unit vector Ia. For in-phase S magnetization at the start of
decoupling, the I vectors are aligned withBe. If there is order
between the I and S spins prior to application of the decoupling
irradiation (e.g., SyI j, with j 5 x, y, or z), this coherence
establishes a preferred orientation for the I spins given by the
direction of Ij. If the decoupler field is applied at an angle to
this axis, the I vectors will precess about the field in the usual
manner and affect the instantaneous coupling accordingly.

For most cases of interest in adiabatic decoupling, the di-
rection ofBe coincides with Ia. We present quantitative results
of the vector model applied to these cases. We also show that
the vector model readily explains differences in the nature of
the signal produced by transverse coherence compared to lon-
gitudinal coherence at the start of decoupling. A quantitative
treatment of decoupling applied to transverse coherence, where
the I-vectors are not aligned withBe, further illustrates the
power and utility of the model.

EXPERIMENTAL

Experimental spectra used in the quantification of sidebands
were obtained from1H-detected13C-decoupled spectra (16
transients) generated from the heteronuclear spin-echo differ-
ence pulse sequence (19) followed by STUD1 decoupling (8)
using a sample of13CH3I (2% in CDCl3, with 0.2% Cr(AcAc)3
relaxation agent;JCH 5 150 Hz) in a 5 mm HCNtriple-
resonance PFG probe on a 500 MHz Varian INOVA spectrom-
eter. These spectra were obtained with thebwdthparameter set
to 50 kHz, and each sech/tanh waveform in the STUD1
pattern was delivered as 500 increments of RF amplitude and

phase. RF amplitudes (RFmax) were calibrated by determining
the 180° on-resonance pulse time for13C and are expressed as
the reciprocal of the 360° pulse time in units of kilohertz.

The natural linewidth of the1H resonance of the sample was
2.6 Hz at half height and this was exponentially line broadened
to approximately 4 Hz. All spectra were baseline corrected
using a spline fit (standard Varian NMR software) so that
baseline regions either side of the centerband and each side-
band were set to zero amplitude. All sideband amplitudes are
the average of both sidebands on opposite sides of the center-
band. These amplitudes were measured as peak heights relative
to the centerband, assumed to be 100%. Under conditions of
high RF decoupling power, sample heating induces variable
linewidths, and it is not possible to exactly determine absolute
centerband amplitudes experimentally. The relative measures
were converted to absolute from the reduction of the center-
band below 100% estimated from theoretical simulations. For
the results presented this is a small correction, reducing a
sideband amplitude of 0.56% to 0.53% as in Table 1, for
example, and the1/(2Tp) sideband of 2.05%, relative, de-
scribed in the “Asynchronous Decoupling” section, to an ab-
solute value of 1.98%. Thus, all sideband levels are quoted as
percent absolute to facilitate the comparison of experimental
and theoretical results.

Measurement of the dispersion-mode1/(2Tp) sideband
described in the “MissetJ-Delay Periods” section presented
a more difficult problem. Phase correction by 90° allows
measurement of the amplitude, but the resulting large dis-
persion-mode wings on the centerband introduces ambiguity
into the baseline around the sidebands. Alternatively, mea-
surement of the sidebands relative to the centerband in an
absolute-value spectrum also introduces baseline ambiguity
because all signals are broadened. The quoted value of 9.1%
absolute is an average of 8.9% and 9.3%, respectively, from
these two methods.

Signals measured from transverse coherence during decou-
pling (plotted in Fig. 5) were acquired after application of the
pulse sequence

TABLE 1
Experimentally Determined n/Tp Sidebands as a Percent of the Total Signal for On-Resonance Decoupling (s 5 0) using STUD1 (8)

with bwdth 5 50 kHz, Tp 5 1 ms, Compared to Levels Predicted from Fourier Transformation of Vector-Model Signal cos w(t) Obtained
using Eqs. [8] and [9]a

RFmax

(kHz)

Experimental Predicted

bwdth/(RFmax)
21/Tp 2/Tp 3/Tp 4/Tp 1/Tp 2/Tp 3/Tp 4/Tp

9.9 0.53 20.12 0.05 20.02 0.54 20.12 0.05 20.02 0.5
6.8 0.54 20.13 0.06 20.03 0.55 20.13 0.05 20.03 1.0
6.0 0.54 20.13 0.06 20.03 0.55 20.13 0.05 20.03 1.3

a The high-power limit in sech/tanh decoupling, where phase cycling has no effect on the intensity of sidebands, is nominallybwdth/(RFmax)
2 & 0.5 (20).

At lower power, phase cycles used in adiabatic decoupling generate additional sidebands at the cycling frequency and its harmonics, but have little effect onn/Tp

sidebands, as discussed in the “On-Resonance Decoupling” section of the text.
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90x@H#–1/~4J!–$180@H#, 180@C#%

–1/~4J!–90y@H#–G–$90@H#, 90@C#%

to prepare the pure antiphase state SyIx. G is a short pulsed-
field gradient to suppress unwanted transverse1H magnetiza-
tion. The phases of the final 90[H], 90[C] pulses and the STUD
waveform were alternated in conjunction with the receiver
phase to reduce experimental artifacts. Two separate spectra
were obtained, one with a 90° phase for the first pulse in the
STUD train (Fig. 5a), and a second with zero phase (Fig. 5b).
A total of 4096 transients were accumulated and the real FID
is displayed after phase correction so that no signal is present
in the imaginary FID. The FIDs were digitized in 10ms steps.

APPLICATIONS

On-Resonance Decoupling

For in-phase S magnetization at the start of on-resonance
decoupling (s 5 0), the system evolves as depicted in Figs.
1a–1c. The I vectors are aligned withBe along thez axis at the
beginning of the first adiabatic inversion pulse, andJr(0) 5 J0.
During the pulse, the two S-spin vectors precess in opposite
directions in the transverse plane at an instantaneous frequency
Jr /2 relative to the center, or average, frequency of the two
lines, reverse direction at timeTp/2 whenJr changes sign, and
refocus at timeTp. The detected signal relative to this center
frequency is cosw(t), where the time-dependent precession
anglew(t) in the transverse plane, as illustrated in Figs. 1a–1c,
is obtained as the integral of the angular frequency,pJr(t). For
the second inversion pulse, shown in Fig. 1c, the labels of the
spin vectors are exchanged compared to the first pulse, sow3
2w during this period. Thus,w (and a, below) is an odd
function with period 2Tp, whereas the signal cosw(t) is an even
function with periodTp.

As a bookkeeping device enabling a concise expression for
w(t), valid for all t, we definek as the quotientt/Tp rounded to
the lowest integer. Starting withk 5 0, the time interval
betweenkTp and (k 1 1)Tp is counted as thekth interval. We
also definetk ast 2 kTp, so 0# tk # Tp. Then, on resonance,
we obtain

w~t! 5 pJ0a~t!Tp/ 2, [8]

where

a~t! 5
~21!k

b Hcosh21F coshb

Î12v2G 2 cosh21Fcoshb~1 2 2tk/Tp)

Î12v2 GJ[9]

with v defined asRFmax/(bwdth/ 2). More simply, the function
a(t) is constructed using the time interval [0,Tp] and is
repeated with alternating sign in subsequent intervals. Details

of the derivation are provided in the Appendix. The maximum
precession of the S spins, depicted in Fig. 1b, is given by
pJ#Tp/2, where the average coupling during the timeTp/2 is

J# 5 J0 a~Tp/ 2!. [10]

Specific values forJ# have previously been obtained by numer-
ical integration (4), in agreement with the explicit results of
Eqs. [8] and [9].

Sideband intensity. In the complete absence of coupling,
the S-spin signal detected on resonance would be constant,
which we normalize to one to simplify the discussion. As
demonstrated in Figs. 1a–1c, however, some coupling preces-
sion and refocusing of the S vectors must occur during each
adiabatic decoupling pulse, because the pulse cannot be instan-
taneous. The maximum precession angle, which determines the
amplitude of the resulting signal modulation, will increase with
Tp. For ideal inversions, as in the high power adiabatic limit
(e.g.,bwdth/(RFmax)

2 & 0.5 for sech/tanh pulses) the form of
this modulation is repeated exactly throughout the entire train
of decoupling pulses with a period equal toTp. If the modu-
lation could be described as a simple sinusoid,Acos(2pt/Tp),
which is added to the constant DC component of the on-
resonance signal, (12 A), the Fourier transform of the S
signal would produce the centerband and sidebands at61/Tp

relative to the centerband. The actual signal is cosw(t), using
Eq. [8]. It is not a simple sinusoid, but consists of the funda-
mental frequency 1/Tp, which determines the period of the
oscillation, and higher frequency components, which charac-
terize the departure of the modulation from a single sinusoid.
The Fourier transform of this signal gives the decoupled center
peak and sidebands at integer multiples of the fundamental
frequency. These are the only sidebands that appear under
these ideal conditions. Phase cycling the train of adiabatic
pulses at lower power in typical decoupling applications is
designed to compensate for imperfect inversions by achieving
approximately ideal inversions over periodsmTp, resulting in
additional sidebands at 1/(mTp) and its harmonics. These
phase cycles should therefore have little or no effect onn/Tp

sidebands. This can be seen in Fig. 3 of Ref.8, where the
maximum sideband amplitude at high RF power, which ap-
pears at 1/Tp, is the same independent of the phase-cycling
scheme used. Further confirmation is provided in Table 1,
where then/Tp experimental sideband amplitudes for STUD1
on resonance are almost identical to those calculated from the
Fourier transform of cosw(t), independent of RF power.

Thus, in the high power limit, on resonance, the vector
model of a single adiabatic pulse provides an accurate descrip-
tion of adiabatic decoupling. For the sech/tanh pulse, we will
show later that the intensity of the 1/Tp sideband on resonance
sets the lower bound on the maximum sideband amplitude over
the full decoupled bandwidth in the adiabatic limit. Similarly,
the centerband sets the upper bound on the intensity of the
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FIG. 1. (a) After an ideal pulse sequence, just preceding signal acquisition (t 5 0), the S signal will be focused in the transverse plane. At the beginning
of the first adiabatic decoupling pulse, the effective field,Be, is aligned with the1z axis. With no coherence between I and S, this determines the quantization
axis of the I spins, which have an equal probability of being along6z. The S magnetization can thus be divided into two coincident vectors, with their associated
I vectors antiphase along thez axis. During the adiabatic pulse,Be rotates through thex axis to2z. Provided the adiabatic condition applies, the I vectors rotate
with Be. In addition, the S vectors precess in the transverse plane at a rate proportional to thez-axis components of Ia and Ib. The time-dependent reduced
couplingJr is given by Eqs. [3] and [7], and the time-dependent precession angle derived from this is given in Eqs. [8] and [9]. At the beginning of the pulse,
the S vectors precess at an instantaneous frequencyJ0/ 2 Hz, whereJ0 is the normal coupling constant. This rate of precession decreases to zero as Ia and Ib
pass through the transverse plane.(b) For on-resonance decoupling (s 5 0), at the midpoint of the pulse, timet 5 Tp/2, the S vectors will be stationary and
will have precessed through their maximum angle given bypJ#Tp/2, whereJ# / 2 is the average rate of precession during half of the pulse, given by Eq. [10]. During
the second half of the pulse the S precession is in the reverse direction, again at the average rate ofJ# / 2. (c) The spins at the start of the second decoupling pulse
have refocused along thex axis at timet 5 Tp. This cycle repeats everyTp, modulating the total S signal with a period ofTp and generating sidebands at the
fundamental frequency61/Tp and its harmonics.(d) For off-resonance decoupling the vector picture begins as for on-resonance decoupling in Fig. 1a.(e) If
the offset parameter,s, is positive,Be and the I spins will not have rotated completely to the transverse plane at the midpoint of the pulse,t 5 Tp/2, and the
precession of the S spins continues at a decreasing rate until the I spins are transverse, where the coupling is zero. During the second half of the pulse,Be and
the I spin vectors pass through the transverse plane, and the S precession reverses. (f ) At t 5 Tp the S spins have not quite refocused and make an angle,pJ#sTp,
with respect to thex axis, whereJ#s/2 is the average rate of precession for the entire pulse given by Eq. [13]. During a second adiabatic pulse this net precession
angle is accumulated in the opposite direction, and the S spins refocus with an overall cycle time of 2Tp, generating sidebands at61/(2Tp) and its harmonics.
(g) If the t delay time in a heteronuclear spin-echo experiment is misset at1/(4J) or 3/(4J), the S vectors for odd transients will be antiphase along they axis
just prior to decoupling. The coherence represented by the ordered SyIz state establishes a preferred orientation for the I spins, which are antiphase along thez
axis. Some antiphase S magnetization will exist for anyt Þ 1/(2J), or for any other preparation pulse sequence where nonidealn/(4J) delays must be used.
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decoupled central peak, which determines the signal-to-noise
performance of sech/tanh decoupling. Centerband and side-
band amplitudes are obtained from the Fourier transform of cos
w(t) and are plotted in Fig. 2 (solid lines) as a function ofTp

for bwdth 5 50 kHz and a high power limit ofbwdth/
(RFmax)

2 5 0.1. Previous extensive plots of experimental
sideband calibration curves (20) for a range ofbwdth values
(5–120 kHz) show that this value forbwdth/(RFmax)

2 is sig-

FIG. 1—Continued

(h) At t 5 Tp/2, the S vectors will have precessed through the same maximum angle as in Fig. 1b.(i) At t 5 Tp, the S vectors will have returned to their initial
state, similar to Fig. 1c. However, unlike the example shown in Fig. 1c, the two S vectors are antiphase along they axis, so they precess in the opposite direction
in the transverse plane during a second pulse of periodTp, modulating the total S signal with a period of 2Tp and producing sidebands at61/(2Tp) and its
harmonics. (j ) For in-phase S magnetization, if an on-resonance decoupling scheme is begun halfway through an adiabatic pulse, the effective field establishes
the quantization axis of the I spins, which have an equal probability of being along6Be. The initial S magnetization can be divided into two coincident vectors,
associated with the corresponding antiphase I vectors, and these S vectors will precess at an average rate ofJ# / 2 during the firstTp/2 period.(k) At t 5 Tp/2
the S precession will continue in the same direction at the same average rate as the second adiabatic inversion pulse is initiated.(l) At t 5 Tp, the S vectors will
have precessed twice as far as in Fig. 1b and make an angle,pJ#Tp, with respect to thex axis. The S vectors are stationary at this time; then, since thez component
of Ia becomes positive, they reverse their precession and refocus during a second cycle of periodTp. Complete refocusing occurs every 2Tp, thus generating
sidebands at61/(2Tp) and its harmonics.
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nificantly below the level where sideband intensity becomes
insensitive to further increases in RF power, indicating the
limit of ideal adiabaticity has been reached.

A simple estimate of the 1/Tp sideband can also be obtained
from the amplitude of the cosw(t) modulation of the S-spin
FID, although this clearly ignores the presence of higher fre-
quency components due to both the abrupt change in preces-
sion of Sa and Sb at timeTp/2 and the fact that the precession
frequency is not constant. Half the peak-to-peak amplitude of
the modulation on a scale where the central peak from the two
S-spin vectors is normalized to one (i.e., another factor of1

2
)

gives1 0.25[1 2 cos (pJ#Tp/2)] for the intensity of the 1/Tp

sideband. This expression overestimates the actual maximum
sideband amplitude given in Fig. 2 by;37% for all Tp in the
range 0.1 to 3 ms, but it serves to illustrate that a modulation
with a simple period ofTp, in which the signal refocuses only

at integral multiples of this period, must produce the largest
sideband at 1/Tp even if the form of the modulation is more
complicated than a single sinusoid.

Sidebands have also been estimated by assuming a constant
value for the couplingJ0 during an inversion pulse (6) to
obtain the result for standard spin-flip decoupling with ideal
delta-function inversion pulses (21). The Fourier coefficients
of this signal (a cosine arc reflected aboutTp/2, giving a cusp
at the midpoint of the pulse) also overestimate the maximum
sideband in sech/tanh decoupling by;11% over the same
range of variation inTp given earlier and overestimate the
higher order sidebands by increasing amounts.

However, the present vector model shows why assuming
constantJ0 for the spin evolution works reasonably well for
sech/tanh decoupling. This particular amplitude/frequency
modulation scheme keepsBe (and therefore, Ia) closely aligned
with thez axis for a significant fraction of the pulse, givingJr

' J0 during these times, by Eq. [7]. We can tailor the estimate
for sideband intensity given in Ref. (6) more specifically to
sech/tanh decoupling by using the average coupling,J# , instead
of J0, to find the Fourier coefficients of the even function
cos(pJ# t) evaluated between6Tp/2 and expanded in terms of
the basis set cos(2pnt/Tp). The signal intensity atn/Tp in the
frequency domain is half the coefficient of the associated
cosine term. We write our answer in the form given in (6) to
obtain the modified result

An 5
1

2
@sinc~n 2 J#Tp/ 2! 1 sinc~n 1 J#Tp/ 2!# [11]

for the amplitude of the sideband at frequencyn/Tp. The sinc-
function dependence shows immediately that sidebands become
progressively and rapidly smaller as a function of increasing order
n. The sign of the sidebands is (21)n11 for n Þ 0, which can be
obtained by writing the foregoing sinc(x) terms in the form
sin(px)/(px). The centerband (n 5 0) and maximum sideband
(n 5 1) amplitudes obtained using the approximation of Eq. [11]
are plotted in Fig. 2 for comparison with the exact results. Using
a constantJ# to obtain a signal cos(pJ#t) in place of cosw(t), derived
in Eq. [8] from the true time-dependent coupling, again increases
the amplitude of the higher frequency components due to the
abrupt change in the cosine function atTp/2, where refocusing
begins, and results in a slight underestimate of the centerband and
first sideband. To compensate,bwdth/(RFmax)

2 5 0.7 was used to
calculateJ#, giving a better representation of the true signal that
depends on variableJr(t).

Off-Resonance Decoupling

The time- and frequency-domain signals obtained using
sech/tanh decoupling on resonance in the adiabatic limit can be
obtained using Eqs. [8], [9], and [11]. An analogous, but more
complicated, analytical expression can be derived for off-
resonance decoupling (s Þ 0), as described in the Appendix,1 In Ref. 8, this formula was erroneously typeset as 0.25 cos(12 pJ#Tp/2).

FIG. 2. (a) Solid line: Absolute intensity of the 1/Tp sideband, relative to
a fully decoupled central peak height of 1, for on-resonance decoupling in the
high-power limit of ideal adiabaticity, plotted as a function of the length,Tp,
of a single inversion pulse. The plotted values were obtained by Fourier
transforming the exact vector-model signal cosw(t) from Eqs. [7] and [8]
(bwdth/(RFmax)

2 5 0.1, bwdth 5 50 kHz, J0 5 150 Hz), using the
time-dependent couplingJr(t) as derived in the Appendix. This curve is
indistinguishable from the result of an exact quantum-mechanical calculation.
Relative intensity can be obtained by dividing these values by the central peak
heights provided in part (b) by the scale on the right. Dashed line: 1/Tp

sideband intensity using Eq. [11] (n 5 1), obtained by approximating the
exact vector model signal as cos(pJ# t), whereJ# is the average on-resonance
coupling during timeTp/2. The precessing spins reverse direction atTp/2 and
refocus atTp, so the average on-resonance coupling during the entire pulse is
zero. The valuebwdth/(RFmax)

2 5 0.7 was used to compensate for the effects
of substituting a constantJ# in place of the true time-dependent coupling, as
described in the text. (b) Solid line: Centerband intensity obtained from exact
vector-model signal, as above. Dotted line: Centerband intensity obtained from
cos(pJ# t), as above.
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and we have used this expression to verify that the 1/Tp

sideband on resonance is the maximum sideband over the full
decoupled bandwidth in the high-power limit of sech/tanh
decoupling.

However, the salient features can be obtained more simply
by noting that Eq. [2] givesDH 5 0 (i.e.,Be in the transverse
plane) for

t 5
Tp

2 F1 1
tanh21~s!

b
G , [12]

which occurs before (after) the midpoint of the pulse for
negative (positive) offsets. Thus,Be in off-resonance decou-
pling does not spend equal time above and below the transverse
plane during a single pulse of lengthTp. For negative offsets,
the S spins refocus along thex axis at twice the time given in
Eq. [12], and subtracting this fromTp gives a timeTp/b
tanh21(s) at the end of the pulse during which unrefocusedJ
evolution occurs. If the offset is positive, this period establishes
a net separation for the S spins at the beginning of the pulse,
then the spins precess further, reverse direction, and refocus to
this separation at the end of the pulse. For the sech/tanh pulse,
Be is aligned, to a good approximation, with the6z axis during
this period of netJ evolution, with the sign depending on the
sign of s. We can therefore identify an average off-resonance
coupling constant during the timeTp as

J# s 5 ~ J0/b!tanh21~s!. [13]

The same equation has been previously determined for the use
of a single sech/tanh pulse at the center of a chemical-shift-
correlation delay (4).

The situation is illustrated in Figs. 1d–1f for positive offset,
s, whereBe crosses the transverse plane after the midpoint of
the pulse. The period of unrefocusedJ modulation occurs at
the beginning of the pulse when Ia is along1z. The resulting
signal is shown in Fig. 3, calculated for a resonance offset of
s 5 0.7 in the high-power limit of sech/tanh decoupling.
Partial refocusing occurs after the midpoint of the pulse, when
Be rotates Ia through the transverse plane, as depicted within
the dotted lines in Fig. 3. The detectable fraction of S magne-
tization at the end of the pulse is cos(pJ#sTp). Repetition of the
pulse, with Ia now initially along2z, causes precession in the
opposite orientation during the period of netJ evolution (J#s of
opposite sign during the secondTp) and leads toSa and Sb

being refocused in the transverse plane at the end of the second
pulse. Therefore, the modulation for off-resonance decoupling
is an even function with a period equal to 2Tp.

Sideband intensity. As discussed earlier, the on-resonance
time-domain signal is an even function with periodTp and can
be decomposed as a linear combination of cosine terms of
frequencyn/Tp, leading to Eq. [11] for the intensities of the

centerband and sidebands. To assess the changes that occur in
sideband intensities off resonance, we consider what must
occur if the decoupler is offset from resonance by an infini-
tesimal amount. The Fourier-series expansion of the signal
must now include an infinitesimally small term of frequency
1/(2Tp) to shift the period to 2Tp, and the coefficient of the
1/Tp term must be correspondingly decreased so the signal
amplitude remains unchanged att 5 0. As the decoupler is
moved farther off resonance, the amplitude of the1/(2Tp)
component continues to increase, while the amplitude of the
1/Tp term decreases accordingly. However, as reported previ-
ously (4), Eq. [12] for sech/tanh decoupling is relatively in-
sensitive to offset forusu & 1, resulting in a weak dependence
of the 1/(2Tp) sidebands ons, sinceBe crosses the transverse
plane near the midpoint of the pulse for a large fraction of the
decoupled bandwidth (for example, att/Tp 5 0.55, 0.60, 0.64,
and 0.67 fors 5 0.5, 0.8, 0.9, and0.95, respectively). Thus,

FIG. 3. The off-resonance (s 5 0.7) decoupled signal cosw(t) derived
from the vector model is plotted as a function of timet/Tp, normalized to the
pulse length, in the high-power limit of sech/tanh decoupling using parameters
(bwdth/(RFmax)

2 5 0.1, bwdth 5 50 kHz,Tp 5 2 ms for a couplingJ0 5
150 Hz. The off-resonance precession anglew(t) in the transverse plane is
derived in the Appendix and is indistinguishable, in the high-power limit used
here, from the result of an exact quantum-mechanical calculation. As illus-
trated in Figs. 1d–1f and described in the text, the S magnetization vectors
precess apart for a time (Tp/b) tanh21(s) at the beginning of the pulse, continue
to separate until the effective field rotates Ia through the transverse plane after
the midpoint of the pulse, as given in Eq. [12], then partially refocus during the
remainder of the pulse. This period during which there is no net precession is
delineated by the dotted lines in the figure. The net precession angle att 5 Tp

is thus established at the beginning of the pulse. During a second adiabatic
pulse, this net precession angle is accumulated in the opposite direction, as
shown above fort/Tp . 1, and the S spins refocus with an overall cycle time
of 2Tp, generating sidebands at61/(2Tp) and its harmonics. The unrefocused
period at the beginning of the pulse is a small fraction ofTp for usu & 1, giving
small 1/(2Tp) sidebands over the full decoupled bandwidth. By contrast, for
adiabatic decoupling schemes using linear frequency sweeps, the period of
unrefocused modulation as a fraction ofTp is directly proportional to offset
(see text). The amplitude of the modulation increases accordingly, and the
intensity of the1/(2Tp) sideband therefore has a strong dependence on the
resonance offset of the decoupler for a linear frequency sweep.
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off resonance, the1/(2Tp) sideband is less than the 1/Tp

sideband, which, in turn, is less than the on-resonance 1/Tp

sideband, over a large fraction ofbwdth. The effective de-
coupled bandwidth in our criterion for the quality of decou-
pling (20) is determined by the maximum sideband amplitude
within the decoupled bandwidth. The1/(2Tp) sidebands,
which are produced only off resonance, will limit the effective
bandwidth when they exceed the magnitude of the on-reso-
nance 1/Tp sideband. To a good approximation, this will occur
for s determined by the inequality

cos~pJ# sTp) # cos~pJ#Tp/ 2!. [14]

Substituting Eq. [13] forJ#s gives

usu $ tanhS bJ#

2J0
D . [15]

Values forJ# in the high power limit are typically greater than
0.9J0, so the amplitude of the1/(2Tp) sideband will be less
than the amplitude of the 1/Tp sideband obtained on resonance
for usu , 0.98, by Eq.[15].

Offsetsusu . 0.98 exceed the normal STUD decoupled band-
width, in which the centerband is within at least 80% of the central
peak height for on-resonance decoupling, so the 1/(2Tp) sidebands
generated off resonance by sech/tanh decoupling are not a limi-
tation on its performance. The frequency selectivity of adiabatic
pulses results from the violation of the adiabatic condition near
offsetss 5 61, where the effective field is zero at the beginning
or end of the pulse, by Eq. [2]. The effective bandwidth is
determined by this violation and, as a fraction of the parameter
bwdth for STUD, typical experimental results show increases in
effective bandwidth from 0.91 atbwdth 5 50 kHz to 0.95 at
bwdth5 100 kHz and close to 0.98 atbwdth5 500 kHz (9, 20).
The phase cycling schemes of Ref. (8) are designed to compensate
for the loss of adiabaticity and have very little effect on the
intensities ofn/Tp sidebands, as discussed earlier for the on-
resonance case. However, new sidebands are introduced at
1/(mTp), the cycling frequency of the phase cycle (usuallym5 5,
10, or 20). Experimentally, the effective bandwidth is observed to
be limited by the rapid increase in amplitude of one or more of the
1/(mTp) sidebands above the magnitude of the on-resonance 1/Tp

sideband, which can be determined from Eq. [11]. Thus, Eq. [11]
determines the maximum sideband amplitude over the effective
decoupled bandwidth in the high power limit of sech/tanh decou-
pling.

Sidebands in linear frequency sweeps.The prediction of
modest1/(2Tp) sidebands in sech/tanh decoupling is consistent
with all experimental results. For example, such sidebands can
be observed in Fig. 1c of Ref. (9) to be close to zero at the
middle of the bandwidth, increasing moderately toward the
edges of the bandwidth without ever exceeding the maximum
sideband in the spectrum. By contrast, the S-signal modulation

that occurs off resonance when using a linear frequency sweep
in an adiabatic decoupling scheme (22, 23) is easily seen to be
more problematic. In this case,Be will reach the transverse
plane at timet 5 (1 1 s)Tp/2, so that the period of unrefo-
cused modulation increases linearly with offset. The amplitude
of the modulation increases accordingly, and the intensity of
the 1/(2Tp) sideband therefore has a strong dependence on the
resonance offset of the decoupler. AlthoughJ# , which is appli-
cable on resonance in the high-power limit, will be somewhat
smaller relative to the value obtained using the sech/tanh pulse,
the sideband performance of a linear frequency sweep over the
full decoupled bandwidth is limited by the increasingly large
1/(2Tp) sideband off resonance (e.g., Fig. 1 of Ref. (9)). Other
decoupling schemes employing amplitude/frequency functions
that are constrained in a manner which improves adiabaticity
off resonance for a chosen amplitude function (24, 25) give
correspondingly better sideband performance, but we have not
found any in our investigations to date that achieve sidebands
as low as the sech/tanh pulse does for a given total decoupled
bandwidth at the same average RF power (9).

Misset J-Delay Periods

Coherence sidebands (10) result from the presence, at the
beginning of an adiabatic decoupling sequence, of either longitu-
dinal or transverse coherence in the spins that are being observed.
They are generated even in simple 1D decoupled spectra, in
contrast to previously discovered coherence effects (11). Coher-
ence sidebands are up to an order of magnitude larger than the
sidebands produced by in-phase magnetization, and sidebands
resulting from longitudinal coherence were demonstrated to be
greater than those produced by transverse coherence. Antiphase
magnetization is an unavoidable result in many useful preparation
pulse sequences applied to realistic samples containing a range of
J values. The associated coherence sidebands can be sufficiently
large to render adiabatic decoupling impractical in many applica-
tions if they are not suppressed. In a previous communication
(10), we devised several methods for eliminating these sidebands
over decoupled bandwidths of up to 100 kHz, and, using a
standard quantum mechanical calculation, derived an expression
that can be solved numerically to determine their intensity. Space
limitations precluded a description of the vector model, but it
provides an accurate and more easily accessible estimate for the
magnitude of coherence sidebands in sech/tanh decoupling, as
well as significant physical insight into the mechanism of their
production, leading to effective strategies for eliminating them.

Longitudinal coherence. In the heteronuclear spin-echo dif-
ference experiment, for odd transients just prior to decoupling, the
S magnetization is completely antiphase in the transverse plane if
the delay periodt is misset at 1/(4J) or 3/(4J), as in Fig. 1g. Even
transients are still represented by Fig. 1a, and so overall the
decoupled signal intensity is halved. Ideal on-resonance decou-
pling, achieved by sampling the signal at integral multiples ofTp,
would yield zero S signal from the odd transients, but realistic
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sampling rates will reveal the precession of the antiphase S vec-
tors, which repeats cyclically every 2Tp, as shown in Figs. 1g–1i,
and thus produces sidebands atn/(2Tp).

The I vectors are antiphase along thez axis at the start of
decoupling, so Eqs. [8] and [9] still apply, but the S-spin magne-
tization along thex axis during coupling evolution is now detected
as sinw(t) for the precession shown in the figure, due to the initial
antiphase orientation of the S vectors. The Fourier-transformed
signal will appear in the imaginary channel, in contrast to the real
cosw(t) signal that generates the centerband and regular sidebands,
so in an actual NMR experiment, these coherence sidebands will
be displayed in dispersion mode if the centerband is phased for
absorption mode. The maximum extent of the S-spin precession is
shown in Fig. 1h, occurring att 5 Tp/2, and is repeated in the
opposite direction during the second adiabatic inversion. As be-
fore, a quick estimate for the peak intensity of the 1/(2Tp) disper-
sion sideband relative to the centerband can be obtained from the
amplitude of the sinusoidal modulation. Again, we require a factor
of 1

2
to normalize to a scale where the central peak from the two

S-spin vectors has unit intensity, to obtain 0.5 sin(pJ#Tp/2), which
is much larger than the estimate obtained starting with in-phase
magnetization. Arguments leading to Eq. [11] allow a better
estimate for coherence sidebands by finding the Fourier coeffi-
cients of sin(pJ#t), where the signal reverses atTp/2 as before, but
has a period 2Tp and is an odd function. We obtain

Bn 5 H 1

2 Fsinc
n 2 J#Tp

2
2 sinc

n 1 J#Tp

2 G for n odd

0 for n even

[16]

for the peak-to-peak dispersion-mode amplitude of coherence
sidebands at frequencyn/(2Tp).

For a typical experimental implementation usingbwdth5 50
kHz, Tp 5 1 ms, andRFmax 5 9.9 kHz, actual 1/(2Tp) dispersion
sidebands fort misset at 3/(4J) are 9.1% of the detected S signal
compared to predicted values of 11.0% from 0.5 sin(pJ#Tp/2),
8.9% given by Eq. [16] and 9.4% from the exact Fourier trans-
formation of sinw(t). These amplitudes are for the 1/(2Tp) side-
bands phase-corrected by 90° to be in absorption mode. Sources
of error in the measured sideband amplitudes are discussed in the
Experimental section. Sideband levels quoted in Ref.10 were
baseline-to-peak amplitude of the dispersion-mode sidebands,
which is about half the total amplitude.

Transverse coherence.If transverse coherence terms SyIx

or SyIy are present at the start of decoupling, the I vectors in
Fig. 1g would begin in the transverse plane. During an ideal
adiabatic inversion pulse, the I vectors would remain spin-
locked at 90° with respect toBe, but would also precess rapidly
about this field. The projection of Ia on the z axis, which
determinesJr(t) by Eq. [7], thus oscillates rapidly during the
pulse, giving rise to a complex pattern of higher-frequency
sidebands which we have referred to as sideband noise in our

previous analysis of the problem (10). This rapid, short-period
oscillation limits the precession amplitude of the S vectors,
producing more, but smaller, sidebands compared to the fewer,
but larger, sidebands observed for longitudinal coherence SyIz.

An easily visualized demonstration of the signals generated
by transverse coherence during decoupling is provided by
settingRFmax 5 bwdth/ 2. Since sech2( x) 1 tanh2( x) 5 1,
the magnitude ofBe is a constant equal toRFmax as it is
adiabatically rotated from1z through the transverse plane
along thex axis to2z. We consider the specific caseRFmax 5
10 kHz. During an inversion pulse of lengthTp 5 1 ms applied
to 13C spins, antiphase magnetization represented by the vec-
tors Ia and Ib, in the transverse plane at the start of the pulse,
will executeRFmaxTp 5 10 complete rotations aboutBe. As Be

rotates, Ia precesses in the plane orthogonal toBe, and the
projection of Ia along 6z oscillates with a period 1/RFmax.
The vector model therefore predicts that the detected S-spin
signal will correspondingly precess and refocus through 10
cycles in 1 ms asJr(t) oscillates in the manner just described.

The vector model prediction for the signal is also easily
calculated. The appropriate expression forJr(t) could most
generally be obtained by transforming to a system rotating
about the instantaneous direction ofBe, but it can also be
readily visualized in the current example. WhenBe has rotated
through an angleu (t), the plane of the I vectors is tilted at the
same angle relative to thex–y plane, as shown in Fig. 4. The
two planes share the samey axis, so only the component of Ia

along the axisx9 in the tilted plane, (Ia)x9, has a projection on
thez axis. The projection is given by2(Ia)x9sinu, where sinu
5 B1/Be is the sech function in Eq. [1] (sinceRFmax 5
bwdth/ 2), and (Ia)x9 is cos(2pBet) for SyIx coherence at the
start of decoupling and sin(2pBet) for SyIy coherence. The
sense of rotation illustrated in Fig. 4 is for nuclei of positive
gyromagnetic ratio, and we obtain

SyIy: Jr~t!/J0 5 2sin~2pBet! sechb~1 2 2t/Tp! [17]

for the instantaneous coupling due to the presence of SyIy

coherence at the start of on-resonance sech/tanh decoupling
with Be of constant magnitude. The time-dependent coupling
in this case results from the model I vectors perpendicular toBe

precessing about this field as it rotates in thex–z plane.
The analogous expression for the SyIx case would substitute

cosine for sine in Eq. [17], but there is an additional nuance
that provides further confirmation of the vector model. Since
B1(0) } sechb is not equal to zero,Be(0) has a smallx
component. The pulse begins slightly tilted with respect to the
z axis, and the plane of the I vectors is not exactly orthogonal
to Be. The I-vector component perpendicular toBe, which
generates the high-frequency oscillations inJr described pre-
viously, is Iacosu(0) 5 Iatanhb and is within 0.005% of Ia for
b 5 5.3. The component parallel toBe is Iasin u(0) 5 Iasech
b, giving a 1% correction forb 5 5.3. This will produce a cos
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u (t) dependence inJr according to Eq. [3], where cosu 5
DH/Be is the tanh function in Eq. [1], and a longer modulation
period of Tp compared to the high-frequency oscillations.
Since the precession anglew(t) of the S-spin vectors is the
integral of the angular frequencypJr(t), the accumulation of
phasew during the low frequency modulation can be a larger
fraction of the total phase than might be apparent from con-
sidering the magnitude of the sechb factor alone. The vector
model therefore predicts an important distinction between the
decoupled signals from SyIx and SyIy, with an additional mod-
ulation of periodTp in the SyIx case due to the contribution the
I-vector component alongBe makes toJr, giving

SyIx: Jr~t!/J0 5 2@cos~2pBet!sechb~1 2 2t/Tp!#tanhb

1 @tanhb~1 2 2t/Tp!#sechb. [18]

The result of integrating the second term in Eq. [18] to obtain
its contribution to the precession angle,w, has already been
considered in the Appendix as the particular casev 5 1, and the
other terms in Eqs. [17] and [18] can be integrated numerically to
generate the signal sinw(t) for antiphase S magnetization at the
start of decoupling, as discussed earlier for the SyIz case illustrated
in Figs. 1g–1i. The results are shown in Fig. 5, where the vector
model predictions for the signals resulting from SyIx and SyIy
coherence at the start of decoupling are compared with experi-
ment and the predictions of quantum mechanics. The results are
plotted over the course of a single decoupling inversion pulse
implemented using a value sechb 5 0.02 to show more clearly
the additional low frequency modulation predicted for the SyIx
signal compared to SyIy. The agreement among model, theory, and
experiment is evident.

The vector model provides a physical mechanism that sim-
ply and accurately predicts the time evolution of observable
magnetization when adiabatic decoupling is applied to initial
transverse coherence. The model pictures Ia and Ib rotating in
propeller fashion aboutBe. The magnitude ofJr will be a
maximum for the SyIx case at timeTp/2, whenBe is aligned
with the1x axis and the large component of Ia perpendicular
to Be is aligned with2z after completing five rotations in the
plane orthogonal toBe. The smallest oscillations occur near the
beginning and end of the pulse, whenBe is close to thez axis
and Ia is near the transverse plane. For the SyIy case, Ia begins
aligned with1y, giving Jr(0) 5 0, and returns to1y at the end
of each precession aboutBe, sinceBe is rotating in thex–z
plane. AtTp/2, after five such cycles about the effective field,
Jr is again zero and the maximum in magnitude forJr thus
occurs a quarter period of the precession cycle earlier, shifting
the signal maxima for SyIx and SyIy relative to each other by
the same amount. In addition, sinceJr(0) 5 0 for SyIy, the
precession amplitude of the S magnetization will be a maxi-
mum at each subsequent zero-crossing ofJr, giving a signal
that is symmetric aboutTp/2, as observed. The excellent agree-
ment between theory and experiment in Fig. 5 provides further
support for the utility of the model.

Elimination of coherence sidebands.The methods we de-
scribed to eliminate coherence sidebands (10) utilized field
gradient pulses to randomize either transverse antiphase I or S
magnetization, or both, across the bulk sample. In terms of
vectors, randomization of the undesirable components of the
S-spin magnetization directly prevents the detection of a net
signal, whereas randomization of the I spins insures that the
precession of the coupled S spins at any given point in the
sample will be cancelled by an equal but opposite precession at
some other point of the sample. The bandwidth for these
techniques is limited by the bandwidth of the 90° pulses
required to convert longitudinal antiphase I magnetization to
transverse magnetization, or to preserve transverse in-phase S
magnetization along thez axis during the pulsed gradients.
Nonetheless, effective decoupled bandwidths of up to 100 kHz

FIG. 4. The evolution of observable S-spin magnetization when adiabatic
decoupling is applied to transverse coherence SyIy is illustrated according to the
vector model. The left panel shows the initial configuration of the system, with the
I and S vectors aligned with they axis. The I vectors precess about the decoupling
field Be during the adiabatic sweep, as shown in the upper right panel for an
arbitrary time prior to the midpoint of the adiabatic inversion pulse. In the model,
the projection of Ia on thez axis determines the instantaneous reduced coupling
Jr(t) according to Eq. [7]. The propellar-like motion of Ia in the plane perpendic-
ular to Be therefore produces a high-frequency oscillation in the coupling, as
compared to the examples shown in Fig. 1, resulting in concomitant reversals of
the S-spin precession shown in the lower right panel. Predictions of the model are
described further in the text and compared with experiment in Fig. 5.
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were achieved, sufficient for13C NMR on a;2 GHz spec-
trometer. Analogous randomization methods can be devised
using RF inhomogeneity across the sample. For example, a
maximum-power adiabatic pulse will cause initial transverse
magnetization to rotate through a large angle aboutBe, as noted
in the preceding paragraph, and this angle will vary across the
sample. However the design of NMR probes is toward in-
creased RF homogeneity, so these alternative RF randomiza-
tion techniques are less efficient than their pulsed-field-gradi-
ent counterparts.

Although single-transient methods are preferable, alternative
double-transient techniques can be readily demonstrated. Thus,
we noted (10) that phase cycling a 90[I] pulse as 906y just prior
to decoupling was equally effective as I-spin randomization. This
causes any precession of antiphase S vectors to be in opposite
directions depending on the phase of 90[I]. An alternative is to
apply two (higher power) adiabatic inversion pulses of lengthTp/2
at the beginning of half of the transients. Thus, at the end of a
period of lengthTp, the situation is as in Fig. 1g for these
transients, whereas Fig. 1i applies to the other half of the tran-
sients, and no net S signal can be observed from the SyIz coher-
ence. This method is not limited by the bandwidth of 90° pulses.

The vector model thus provides a straightforward physical
explanation for the production of coherence sidebands. All
adiabatic decoupling methods will generate sidebands from
antiphase S magnetization, since the representations of Figs.
1g–1i are still applicable. Only the form of the functionw(t)
for the precession angle changes for different adiabatic pulses,
leading to modest differences in the amplitude of the resulting
coherence sidebands.

Asynchronous Decoupling

In composite pulse decoupling, it is common to desynchro-
nize the decoupling pattern from signal acquisition to allow
cycling sidebands to vary in phase between transients and
self-cancel. We have noted that this method increases maxi-
mum sideband amplitudes for sech/tanh decoupling (8). This
work can be summarized as follows. As an alternative to
random asynchronicity, we undertook a detailed study in which
the STUD pattern was shifted in time by known amounts.
Advancing the decoupling pattern by 0.5Tp inverts the 1/Tp

sideband. Therefore, summation of two transients with zero
and 0.5Tp advancement would cancel this sideband. However,
when the pattern is advanced by 0.5Tp, a new sideband is
induced at1/(2Tp), even on resonance where regular STUD
produces no1/(2Tp) sideband in the high-power limit. Signal-
averaging will not cancel this sideband.

An explanation for this new sideband is provided in Figs. 1j to
1l. After a 0.5Tp advancement of the STUD pattern,Be is in the
transverse plane and will rotate to the2z axis during the second
half of the pulse. According to the vector model, in the absence of
coherence between the I and S spins, the quantization axis for the
I spins is Be, so the vectors Ia and Ib will be aligned in the

FIG. 5. Signals resulting from the presence of (a) SyIy and (b) SyIx

transverse coherence at the start of a decoupled acquisition are plotted as
a function of time during the first inversion pulse of the decoupling
sequence. Predictions of the vector model (dashed lines) based on Eqs. [17]
and [18] for ideal sech/tanh decoupling applied on resonance to I-spin13C
are compared with experimental data (1) for 1H-detected S spins and
quantum-mechanical simulations (solid lines). All FIDs are scaled relative
to a signal of unit amplitude from ideally decoupled in-phase magnetiza-
tion, Sx. A constant-magnitude decoupling field of 10 kHz was generated by
settingRFmax 5 10 kHz 5 bwdth/2 in Eqs. [1] and [2] for the implemen-
tation of the sech/tanh pulse, chosen to be of lengthTp 5 1 ms. As
antiphase Ix or Iy precesses aboutBe (see Fig. 4) at the frequency 10 kHz,
the projection of the I vectors on thez axis executes 10 complete oscilla-
tions during 1 ms asBe rotates from1z to 2z (five cycles of increasing
amplitude followed by five of decreasing amplitude). The vector model
therefore predicts 10 oscillations in the time-dependent couplingJr(t), with
a corresponding modulation of the S-spin signal. For the SyIx case, the
plane of the I vectors is not exactly orthogonal toBe, sinceB1(0) } sech(b).
The I-vector component parallel toBe produces an additional modulation of
periodTp superimposed on the high-frequency oscillations, as shown in the
lower panel. The slight mismatch at increasing time between the experi-
mental data and the theoretical predictions may be due to RF inhomoge-
neity in the sample and/or a slight experimental asymmetry in the delivery
of the sech/tanh pulse. Although the signals in this example are relatively
small, at the lower RF power levels used in practical decoupling sequences
where the pulses are no longer ideally adiabatic, the effects of general
antiphase coherence can be an order of magnitude larger than the decoupler
modulation of the signal from in-phase magnetization, as shown in Fig. 2
of Ref. 10 illustrating methods for eliminating these coherence effects.
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transverse plane, as shown in Fig. 1j. Thus, thezcomponent of Ia
is initially zero, and the instaneous coupling constant,Jr , will also
be zero by Eq. [7], but will average toJ# over the first half of the
pulse, as before. However, because Ia and Ib are now along6z
when Be completes its rotation to2z, the coupling precession
does not reverse as in Fig. 1b, but continues in the same sense at
the same average rate for a second 0.5Tp period, during whichBe

starts along1zand rotates into the transverse plane, as in Fig. 1k.
The precession of the S vectors reverses at the end of this period
at timeTp, when Ia (andBe) return to the transverse plane, shown
in Fig. 1l. This net precession is then refocused during the next
pulse, cycling every 2Tp and yieldingn/(2Tp) sidebands. The
minimum detectable magnetization, is thus cos(pJ#Tp) and by the
former arguments we can expect 1/(2Tp) sidebands which are a
large fraction of 0.25[12 cos(pJ#Tp)]. In the high-power example
used previously (bwdth/(RFmax)

2 5 0.5,bwdth5 50 kHz,Tp 5 1
ms), Eq. [10] givesJ# 5 0.94J0, and this formula indicates 1/(2Tp)
sidebands at the 2.4% level forJ0 5 150 Hz.

More accurate estimates of sideband amplitudes in asynchro-
nous decoupling can be obtained from an analysis along the lines
of Eqs. [8]–[11]. The lower limit of integration for the net pre-
cession anglew(t) in Eq. [A1] is nowTp/2. This effectively shifts
the functional result of the integration, which isa(t) given in Eq.
[9], to the left by Tp/2 and subtractsa(Tp/2), since this is the
relevant factor for the total phase angle that would have accumu-
lated if the integration had started att 5 0. In addition, the factor
Tp in Eq. [8] becomes 2Tp, since the period of the modulation is
doubled. Using the functional form fora(t) given in Eq. [9], with
the start of asynchronous decoupling defined as the newt 5 0, Eq.
[8] becomes

w~t! 5 pJ0@a~t 1 Tp/ 2! 2 a~Tp/ 2!#Tp. [19]

Fourier analysis of this modulation for sech/tanh decoupling
using the experimental parameters listed earlier predicts
n/(2Tp) sideband amplitudes forn equal to 1 through 5 of 2.06,
20.53, 0.21,20.12, and 0.07% compared to experimental
values of 1.98,20.54, 0.16,20.12, and 0.07%, respectively.
Using Eq. [11] with the appropriate modulation period 2Tp

instead ofTp gives sideband amplitudes of 1.95,20.48, 0.21,
20.12, and 0.08%.

A simple two-transient scheme which uses STUD decou-
pling waveforms advanced by 0Tp and 0.5Tp therefore gives
sidebands of 0.5% at 1/Tp and 0% at 1/(2Tp) for the first
transient and20.54% at 1/Tp and 2.0% at1/(2Tp) for the
second. Asynchronous decoupling will thus average the 1/Tp

sideband to almost zero and the new1/(2Tp) sideband to 1.0%,
which is twice the amplitude of the normal 1/Tp sideband the
method is designed to suppress. Incrementing the decoupler
waveform in smaller increments and averaging more transients
provides no improvement to this basic result. In addition,
1/(mTp) sidebands, produced at lower power by the phase
cycles used in adiabatic decoupling, are also increased when

STUD or STUD1 is applied asynchronously. The method does
not work well for adiabatic decoupling, in general.

The vector model also explains why the 1/Tp sideband is
inverted when the decoupler waveform is advanced by 0.5Tp. For
regular decoupling with no advance of the waveform, the intensity
of the 1/Tp sideband is given by Eq. [11] withn 5 1 and a sign of
(21)n11. For the advanced waveform, the same formula applies,
but the period is doubled and the 1/Tp sideband corresponds to
n 5 2, which has a sign of (21)n11, as before, and is inverted. A
more careful analysis also shows that the magnitudes of the two
sidebands are only approximately equal. Writing sinc(x) in the
form sin(px)/((px), the expressions for the sideband magnitude in
the two cases can be shown to be equal to the extent the approx-
imation sin(pJ#Tp) ' pJ#Tp is valid.

Phase-Shifted J-Modulation

Recently, a new signal-averaging technique (26) was shown to
reduce sidebands to almost insignificant levels for on-resonance
adiabatic decoupling in the high-power limit. A 1/Tp sideband at
the 2% level in a single transient was less than 0.06% after four
transients were averaged, which compares favorably with the
performance of continuous-wave decoupling on resonance. The
vector model and the Fourier shift theorem provide insight into
further implications of the method.

The technique shifts theJ-modulation of the signal by a
time kTp/4, so, for example, thek 5 2 acquisition begins as
in Fig. 1b. This acquisition still has a periodTp, but is
out-of-phase by half a period, orp, with respect to the
unshifted acquisition, so averaging the two signals will
clearly cancel the 1/Tp sideband. More generally, for signal
f(t), the Fourier transform F(n) 5 f̃ (t) becomes
exp(i2pnt)F(n) 5 f̃ (t 2 t) whenf(t) is shifted byt, as can be
seen by a simple change of variable in the Fourier integral.
The on-resonance modulation with simple periodTp pro-
duces sidebands at frequenciesn/Tp, so shifting the modu-
lation by t 5 kTp/4 gives a phase factor exp(iknp/2) for the
sideband at frequencyn/Tp in thekth transient, relative to the
phase of the unshifted sideband. Thus, sidebands of order
n , 4 can be completely canceled by averaging four tran-
sients (k 5 0, 1, 2, 3).

However, off resonance, the vector model shows that the mod-
ulation period is 2Tp, producing sidebands atn/(2Tp), and these
sidebands are dominant in linear frequency sweeps as the reso-
nance offset is increased. In this case, the relative phase of the
sidebands is exp(iknp/4), and the 1/(2Tp) sideband will not be
canceled using four acquisitions. Either eight transients are re-
quired, canceling sidebands of ordern , 7, or a larger shiftkTp/2
regains the on-resonance factor exp(iknp/2) for the relative phase
and cancels sidebands of ordern , 4 upon averaging four tran-
sients. In the latter case, then 5 4 sideband which is not canceled
is now the larger 2/Tp sideband rather than the 4/Tp sideband
remaining for the on-resonance example. Since coherence side-
bands produced by SyIz terms at the start of decoupling also have
period 2Tp, the same arguments apply.
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We note that when sech/tanh decoupling is employed,
1/(2Tp) sidebands are small to begin with. At the lower RF
power levels relevant to practical decoupling applications,
sidebands at 1/(mTp) produced by phase cycling the decoupler
become prominent. For typical decoupling phase cycles,m 5
5, 10, or 20, as discussed earlier. An analysis of these side-
bands produced at lower power is beyond the scope of the
vector model, since the pulse is no longer ideally adiabatic.
Nonetheless, the preceding discussion shows why shifting the
phase of the signal and averaging transients cannot simulta-
neously eliminate1/(5Tp) and 1/(10Tp) sidebands in addition
to n/(2Tp) sidebands without becoming more intricate. Among
the alternative multitransient methods, we have found the
“accordion” technique of Starcuket al. (6) to be effective for
routine broadband decoupling, since it reduces levels of all
sidebands over the decoupled bandwidth.

CONCLUSIONS

A vector model of adiabatic decoupling has been developed
that associates a simple physical picture with the processes
occurring during decoupling. The model in effect factors the
combined influence of IS coupling, of strengthJ0, and the RF
irradiation applied to the I spins into two independent opera-
tions: (i) The time evolution of a pair of antiphase vectors Ia

and Ib defined in the model is determined by the RF field in the
usual manner, with components parallel to the effective applied
field, Be, remaining spin-locked along this direction and com-
ponents perpendicular toBe precessing about the field. The
projection of Ia on thez axis (i.e., defined by the direction of
B0) scalesJ0 to produce a time-dependent reduced coupling
Jr(t). (ii) The coupling evolution of the S-spin magnetization is
determined byJr(t) instead ofJ0. There is almost exact agree-
ment between the vector model and the predictions of quantum
mechanics under conditions whereBe @ J0 (a negligible
restriction in many applications) and the adiabatic inversion
pulses are close to ideal.

The model can be used with facility to predict the results of
decoupling and, in particular, maximum sideband intensity, in a
variety of useful applications. The model clearly illuminates the
capabilities and limitations of two examples considered as possi-
ble methods for reducing sidebands and provides a simple phys-
ical mechanism for the phenomenon of coherence sidebands re-
sulting from missetJ-delay periods. At the quantum level,
coherence sidebands are the signals detected from longitudinal/
transverse coherence during decoupling as the time-dependent RF
field induces transitions that would otherwise be forbidden in its
absence. From the point of view of the vector model, a detectable
in-phase component of the S-spin magnetization evolves from the
initial antiphase configuration due to changes in coupling induced
by the RF field and its action on the I vectors. In the absence of
RF irradiation, transverse coherence is undetectable not only
because the S magnetization is antiphase, but because the trans-
verse I magnetization results in a coupling of zero. The spins are

truly decoupled and no evolution to detectable magnetization
occurs in the S spins.

In the high-power limitbwdth/(RFmax)
2 & 0.5, where the

sech/tanh pulse is ideally adiabatic to a high degree of approxi-
mation, we have derived an analytical expression for the time-
dependent couplingJr(t) that is operative during hyperbolic-secant
decoupling, both on and off resonance, as a function of the
experimental inputsRFmax, bwdth, andTp. We have also derived
closed-form solutions for the decoupled signal. A simple estimate
of the dominant sideband over the full decoupled bandwidth for
sech/tanh decoupling can be obtained as 0.25[12 cos(pJ#Tp/2)],
where the average couplingJ# given in Eq. [10] is typically greater
than 0.9J0. A more accurate expression was provided in Eq. [11]
that sets limiting values for the central decoupled peak (n5 0) and
maximum sideband (n 5 1) in sech/tanh decoupling, as a function
of the same experimental inputs. The maximum amplitude of
coherence sidebands was also shown to be a large fraction of
sin(pJ#Tp/2), with a more accurate expression derived in Eq. [16].
For decoupling methods that employ a linear frequency sweep,
maximum sideband intensity was shown to depend sensitively on
the resonance offset of the decoupler, with the intensity of then 5
2 order sideband quickly surpassing the intensity of the on-
resonancen 5 1 order sideband. The derived limits for sech/tanh
decoupling establish simple and accessible criteria for evaluating
the performance of potentially superior methods.

Although the pulses are no longer perfectly adiabatic at the
lower power levels used in most practical applications of adiabatic
decoupling, phase cycles are routinely used to compensate for the
decreased performance of the constituent pulses and maintain
maximum sideband levels near the ideal limits presented here.
However, an additional consideration in these cases is the close
relation between sideband and centerband intensities illustrated in
Fig. 2, which shows the reduction of the centerband as a function
of maximum sideband intensity in the high-power limit. This
effect is exacerbated at lower RF power, where total sideband
intensity increases and subtracts further from the centerband,
despite the success of the phase cycle in keeping maximum
sideband levels relatively low. Reduced sideband levels in a single
transient translate to increased centerband intensity, while signal-
averaging methods that reduce net sideband levels cannot corre-
spondingly increase the centerband, since the centerband intensity
is established by the level of sidebands in a single transient. The
experimental parameters that enable sech/tanh decoupling to most
efficiently approach the ideal performance described here in a
single transient are presented in a separate paper in this issue (27).

APPENDIX

Starting with in-phase S magnetization, as in Fig. 1a, the
precession angle of Sb in the transverse plane during a single
sech/tanh decoupling pulse is obtained by integrating the time-
dependent angular frequency,pJr(t), to obtain, through Eq. [3],
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w~t! 5 pJ0 E
0

t

cosu ~t9!dt9, [A1]

where cosu 5 DH/Be for u equal to the polar angle between
the effective fieldBe 5 [B1

2 1 (DH)2]1/ 2 and thez axis. We
use Eqs. [1] and [2] and make the substitutionx 5 b(1 2
2t/Tp) to write the integrand as

cosu 5

bwdth

2
~tanhx 1 s!

ÎRFmax
2 sech2x 1 Fbwdth

2
~tanhx 1 s!G 2 . [A2]

Definingv 5 RFmax/(bwdth/ 2), Eq. [A2] can be rearranged as

cosu 5
sinhx 1 s coshx

Îv2 1 ~sinhx 1 s coshx!2 . [A3]

On resonance (s 5 0), using sinh2x 5 cosh2x 2 1, and
defining j2 5 u1 2 v2u gives

cosu 5
sinhx

Îcosh2x 2 j2 [A4]

for v , 1, which is the relevant domain for practical applica-
tions of adiabatic decoupling. Finally, we substituteu 5 (1/j)
coshx. Integrating overx instead oft has also introduced a
factor 2Tp/(2b), and Eq. [A1] becomes

w 5 pJ0

Tp

2

1

b E 2du

Îu2 2 1

[A5]5 pJ0

Tp

2

1

b
~2cosh21u!.

Evaluatingu 5 |1 2 v2|1/ 2 coshb(1 2 2t9/Tp) from 0 to t
gives Eqs. [8] and [9]. Ifv . 1, then the integrand in Eq. [A5]
becomes (u2 1 1)1/ 2 to give sinh21u, while v 5 1 givesj 5
0 in Eq. [A5], and the substitutionu 5 coshx gives the result
ln u for the integration.

For more general resonance offsets, expanding the hyper-
bolic functions in Eq. [A3] in terms of their component expo-
nentials gives two terms equal to

6
~1 6 s!e6x

Î4v2 1 @~1 1 s!ex 2 ~1 2 s!e2x#2 . [A6]

Factoring the denominator as exp(7x) times the appropriately
rearranged radical and making the substitutionu 5 exp(62x)
gives two integrals of the form

1

2
~1 6 s! E du

Îa 1 bu 1 cu2 , [A7]

which can be found in standard integral tables. These integrals
replace the single integral in Eq. [A5], derived for the preces-
sion angle w on resonance, and are evaluated foru 5
exp(62x), with x the same function of time given above. The
corresponding constants in each integrand are

a 5 ~1 7 s!2

b 5 4v2 2 2~1 2 s2!
c 5 ~1 6 s!2

. [A8]
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